Rhythmic bursting in the pre-Bötzinger complex: mechanisms and models.

نویسندگان

  • Ilya A Rybak
  • Yaroslav I Molkov
  • Patrick E Jasinski
  • Natalia A Shevtsova
  • Jeffrey C Smith
چکیده

The pre-Bötzinger complex (pre-BötC), a neural structure involved in respiratory rhythm generation, can generate rhythmic bursting activity in vitro that persists after blockade of synaptic inhibition. Experimental studies have identified two mechanisms potentially involved in this activity: one based on the persistent sodium current (INaP) and the other involving calcium (ICa) and/or calcium-activated nonspecific cation (ICAN) currents. In this modeling study, we investigated bursting generated in single neurons and excitatory neural populations with randomly distributed conductances of INaP and ICa. We analyzed the possible roles of these currents, the Na(+)/K(+) pump, synaptic mechanisms, and network interactions in rhythmic bursting generated under different conditions. We show that a population of synaptically coupled excitatory neurons with randomly distributed INaP- and/or ICAN-mediated burst generating mechanisms can operate in different oscillatory regimes with bursting dependent on either current or independent of both. The existence of multiple oscillatory regimes and their state dependence may explain rhythmic activities observed in the pre-BötC under different conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sodium and calcium mechanisms of rhythmic bursting in excitatory neural networks of the pre-Bötzinger complex: a computational modelling study.

The neural mechanisms generating rhythmic bursting activity in the mammalian brainstem, particularly in the pre-Bötzinger complex (pre-BötC), which is involved in respiratory rhythm generation, and in the spinal cord (e.g. locomotor rhythmic activity) that persist after blockade of synaptic inhibition remain poorly understood. Experimental studies in rodent medullary slices containing the pre-B...

متن کامل

Sodium and calcium mechanisms of rhythmic bursting in excitatory neural networks of the preBtzinger complex: a computational modelling study

The neural mechanisms generating rhythmic bursting activity in the mammalian brainstem, particularly in the pre-Bötzinger complex (pre-BötC), which is involved in respiratory rhythm generation, and in the spinal cord (e.g. locomotor rhythmic activity) that persist after blockade of synaptic inhibition remain poorly understood. Experimental studies in rodent medullary slices containing the preBö...

متن کامل

Endogenous rhythm generation in the pre-Bötzinger complex and ionic currents: modelling and in vitro studies.

The pre-Bötzinger complex is a small region in the mammalian brainstem involved in generation of the respiratory rhythm. As shown in vitro, this region, under certain conditions, can generate endogenous rhythmic bursting activity. Our investigation focused on the conditions that may induce this bursting behaviour. A computational model of a population of pacemaker neurons in the pre-Bötzinger c...

متن کامل

Mixed-mode oscillations and population bursting in the pre-Bötzinger complex.

This study focuses on computational and theoretical investigations of neuronal activity arising in the pre-Bötzinger complex (pre-BötC), a medullary region generating the inspiratory phase of breathing in mammals. A progressive increase of neuronal excitability in medullary slices containing the pre-BötC produces mixed-mode oscillations (MMOs) characterized by large amplitude population bursts ...

متن کامل

Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons.

A network of oscillatory bursting neurons with excitatory coupling is hypothesized to define the primary kernel for respiratory rhythm generation in the pre-Bötzinger complex (pre-BötC) in mammals. Two minimal models of these neurons are proposed. In model 1, bursting arises via fast activation and slow inactivation of a persistent Na+ current INaP-h. In model 2, bursting arises via a fast-acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Progress in brain research

دوره 209  شماره 

صفحات  -

تاریخ انتشار 2014